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A classical problem in electrostatics is the determination of the effective elec-
trical conductivity in a composite material consisting of a collection of piece-
wise homogeneous inclusions embedded in a uniform background. We discuss
recently developed fast algorithms for the evaluation of the potential and elec-
trostatic fields induced in multiphase composites by an applied potential, from
which the desired effective properties may be easily obtained. The schemes
are based on combining a suitable boundary integral equation with the Fast
Multipole Method and the GMRES iterative method; the CPU time required
grows linearly with the number of points in the discretization of the interface
between the inclusions and the background material.

A variety of other questions in electrostatics, magnetostatics and diffusion
can be formulated in terms of interface problems. These include the evaluation
of electrostatic fields in the presence of dielectric inclusions, the determination
of magnetostatic fields in media with variable magnetic permeability, and
the calculation of the effective thermal conductivity of a composite material.
The methods presented here apply with minor modification to these other
situations as well.
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1. Introduction

Interface problems arise in a wide variety of areas of applied mathematics,
including the determination of the electrostatic and magnetostatic fields in
heterogeneous media, the calculation of effective transport properties, and
the motion of multiphase fluids. The governing equation common to each of
these problems is often the second-order elliptic partial differential equation

V(oVu) =0, (1.1)

where o is piecewise constant, subject to some appropriate boundary condi-
tion on %. In many situations, the dynamic range of ¢ can vary enormously
and the geometry can be very complex. The reason for the use of the phrase
‘interface’ problem is that the differential equation (1.1) is often reformu-
lated as follows: find a continuous function u# which satisfies the Laplace
equation in each phase (where ¢ is constant), and whose flux cdu/9n is
continuous across each interface.

Definition 1.1 A function « which satisfies the above conditions will be
referred to as a total potential.

For the sake of clarity, we will focus our attention on questions of electrical
conductivity and leave the translation of our results to other application
areas to the reader. We will restrict our attention for the most part to
two-dimensional problems and consider primarily two issues. One is the
determination of the electric field in the vicinity of a collection of inclusions
in free space; the other is the determination of the effective conductivity of
a composite material.

1.1. Inclusions in free space

The simplest problem of the first type is probably the determination of the
electric field in an infinite plane with conductivity ¢, in which is embedded
a disk D of conductivity o4. In the presence of a uniform applied field

E = (E,,0),

corresponding to an applied potential ¥, = —E,x, the interface problem
takes the form

Au, = 0 in R\ D

Aug = 0 inD
YUe = ug ondD (1.2)
Oue dug
O'e—87 = 0q o on 8D, (13)

where u4 denotes the restriction of the total potential v to D, u. denotes
the restriction of u to IR \ D, and v denotes the outward normal to 9D. We
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also have the far field boundary condition
ue(x,y) - \Ila(x’y) as |(.’r,y)| — Q.

Without loss of generality, let us assume that the disk is of radius one,
centred at the origin. The standard approach to solving this problem (Van
Bladel, 1964; Jackson, 1975) is based on Fourier analysis. Making use of
symmetry, we seek a solution of the form

ug(r,0) = Z ar¥ cos k6
k=0

oo
ue(r,0) = —Egrcosf+ Z Apr~* cos k6,
k=1
where (r,0) are the polar coordinates of a point in the plane. Imposition

of the interface conditions (1.2) and (1.3) and a straightforward calculation
yield

ug(r,8) = EiArcosé — E,rcosf

ue(r,0) = Ea)\cose

— E,rcosf,

where A = (04 — 0¢)/(0a + 0c).

Definition 1.2 The difference between the total potential and the applied
potential will be referred to as the induced potential or the induced response:

Uinduced = % — Y.

In the preceding example, the induced potential is given by uinduced =
E A7 cosf for r <1 and Uinduced = EoA cos@/r for r > 1. Contour plots of
the total and induced potentials are shown in Figure 1.

Remark 1.1 In this article, the applied potential will always be assumed
to be ¥, = —F,x.

1.2. Periodic arrays

A more difficult problem is that of determining the electrostatic field in a
simple composite consisting of a periodic array of disks in a uniform back-
ground (Figure 2). Rayleigh (1892) describes a method for solving this
problem based on multipole expansions. Recent extensions and refinements
have been developed by several groups, including Perrins et al. (1979b),
McPhedran et al. (1988), and Sangani and Yao (1988).

Consider the plane to be tiled by unit squares with conductivity o., each
containing a disk of radius Ry and conductivity og4.
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(A) (B)

Fig. 1. The potential field in the vicinity of an inclusion in free space; the left-hand
figure (A) is a contour plot of the total potential and the right-hand figure (B) is
a contour plot of the induced potential. The z-axis is oriented in the horizontal
direction.

Because of periodicity, it is sufficient to consider a single unit cell B cen-
tred at the origin and the governing equations

Viu, = 0 in B\D,
V?ug = 0 in D,

Ye = ug ondD, (1.4)
8ue _ 8ud
Teg - = 0d 5 on 0D, (1.5)

where uy is the restriction of u to the disk D of radius Ry and u. is the
restriction of u to B\ D. The boundary conditions on B are

U(.’L‘ + 1ay) - U(l',y) = _Ea (16)
uw(z,y+1) — u(zx,y) =0. (1.7)

It is easy to see that outside the disk D, the potential can be represented
as

ue = Ag + (A17 + Bir 1) cos 6 + (Asr® + B3r~3)cos36 + ... (1.8)
and inside the disk D as
ug = Coy+ Circos + Csrdcos360 + ..., (1.9)

where (7,60) are the polar coordinates of a point with respect to the disk
centre. (Note that we have had to introduce more unknown Fourier coeffi-
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Fig. 2. A typical unit cell and its nearest neighbours in a periodic array of disks.
Its length in the z-direction is a and its length in the y-direction is 8. The disk is
assumed to have radius Rg.

cients than in the earlier free-space example.) At the boundary of the disk,
the potential must satisfy the interface conditions (1.4) and (1.5). Imposing
these conditions on the above series, it is easy to derive a relation between
the coefficients A,, and B,,, namely

B, = —ARy™A4, forn>1 (1.10)

where, as before, A = (64—0¢)/(04+0.). Letting A and B denote the vectors
(A1, Ag,---) and (Bi, B, ---), respectively, and letting D be the infinite-
dimensional diagonal matrix with entries D,, = —ARy", the relations (1.10)
can be written as

B=DA. (1.11)

Since each square is subject to a constant potential drop (—E,), it is clear
that the coefficient Ag will depend on the particular location of the unit cell.
It is also clear, however, that the coefficients {A;} and {B;} of the series
expansions about the centre of each disk are translation invariant. In order
to obtain the potential everywhere, it remains only to find another relation
between the coefficient vectors A and B. For this, let (r,0) be a point in
B\ D but close to the boundary of the disk. Then the part of the potential
due to the applied field and to all disks other than D must be

Ag + Ajrcos® + Asrdcos30 +.... (1.12)

If we now subtract ¥,, it is clear that the influence of all image disks is
given by

@ = Egrcosf + Ag + A;rcosf + A3r3cos 30 + . .. (1.13)
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or, using complex notation,

% = Re (AO -+ (EO -+ Al)Z + A323 +. ) (1 14)
where we identify the point (r,0) € IR® with the complex number z = re'’.
Consider now a single distant disk centred at w = m + in. The influence
it exerts at z, which we will denote by u,,, can be expressed in terms of a

multipole expansion:

w = Re Z (z—w)k (1.15)

Since the multipole coefficients By, are the same for each image disk and @
is the field due to all image disks, we have

i=Re ) Z (Z_ (1.16)

weA k=1

where A denotes the set of lattice points (disk centres) excluding the origin,
A = {(m,n)lm,n € Z(m,n) # (0,0)}.

Expanding each term as a Taylor series in z and using equation (1.13), the
coefficients must satisfy the relations

n+k—
A, = ZBk< k-1 >(—1)ksn+k, n>1 (117)

A+ Ey = szk )* Skt (1.18)

where S,, denotes the lattlce sum
wEA
Letting P denote the matrix with entries

n+k—1
Pnk = ( kE—1 )(_1)k5n+ka

and letting V* = (Ey,0, - - -), the relations (1.17) and (1.18) can be rewritten
as

PB=A-V. (1.19)
Both (1.11) and (1.19) are infinite systems of equations. The error in trun-
cating these systems depends on several factors, such as the distance between

disks and the conductivity ratio o4/0.. Once truncated, however, it remains
only to solve a finite-dimensional system for B

(P-DHB=V. (1.20)
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Rayleigh (1892) shows that the effective conductivity can be determined
from the dipole moment B;. This result is extended in a straightforward
manner to arbitrary geometries and multiphase composites in Section 2.9.

1.8. Complex geometry

When the number of disks is large or the shapes of the inclusions are ir-
regular, simple methods of the type described above are not available and
other approaches need to be taken. A number of options have developed
over the last century, including effective medium theory (Landauer, 1978;
Bergman, 1978; Willis, 1981; Milton, 1985), variational methods (Hashin
and Shtrikman, 1962; Beran, 1965; Prager, 1969; Phan-Tien and Milton,
1982; Torquato and Lado, 1988; Helsing, 1993), and asymptotic methods
(Keller, 1987; McPhedran et al., 1988; Bonnecaze and Brady, 1990).

The literature in each of these areas is vast and the references given above
are by no means complete. Unfortunately, none of these approaches is
suited to obtaining quantitatively precise evaluation of the field in com-
plex geometries. For that purpose, one is obliged to consider direct solution
of the governing partial differential equation.

Even within this category, there are several options including extensions
of Rayleigh’s method for systems of disks (Sangani and Yao, 1988), finite
difference methods, finite element methods, and integral equation methods.

We will restrict our attention to the latter category since the problem we
are interested in solving can be recast as a boundary integral equation. This
reduces the dimensionality of the problem by one and greatly simplifies the
discretization of the domain. Such methods are by no means new; integral
equation techniques have been used to solve interface problems in electro-
statics and magnetostatics for many years (Kellogg, 1953; Van Bladel, 1964;
Jaswon and Symm, 1977; Lindholm, 1980; Brebbia et al., 1983; Durand and
Ungar, 1988; Hetherington and Thorpe, 1992; Nabors and White, 1992).

In the next section, we develop the mathematical apparatus of potential
theory and construct second-kind Fredholm equations for interface problems
by representing the solution as a single-layer potential. Numerical methods
based on this formulation have been used previously for both smooth and
polygonal inclusions (Jaswon and Symm, 1977; Hetherington and Thorpe,
1992). The dense linear systems which arise, however, will not be treated by
standard factorization techniques which require O(NN?3) operations where N
is the number of points in the boundary discretization. Instead, the linear
systems will be solved iteratively. This is by now standard in the integral
equation community (see, for example, Atkinson (1976), Baker et al. (1982),
Delves and Mohamed (1985), Rokhlin (1985), Nabors and White (1991)) and
has been used for composite materials calculations as well (Gyure and Beale,
1992).
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We have chosen to use the GMRES method of Saad and Schultz (1986),
but a variety of other conjugate gradient type iterations are also acceptable.
In addition, we will rely on the Fast Multipole Method (Rokhlin, 1985;
Greengard and Rokhlin, 1987; Carrier et al., 1988) to rapidly apply the
integral operators at each step in the iterative process.* By combining these
two schemes, the number of operations required is only O(N). Calculations
with one hundred thousand boundary points, which have been viewed as
intractable, require only minutes of CPU time on a workstation. Previous
work which uses the Fast Multipole Method in this way includes that of
Rokhlin (1985), Nabors and White (1991), and Greenbaum et al. (1992;
1993). A more thorough discussion of certain aspects of the present article
and more extensive numerical experiments can be found in Moura (1993).

2. Potential theory

In this section, we review the basic properties of layer potentials involving
a Green function for the Laplace equation. We then discuss two possible
integral equation approaches to the solution of electrostatic problems in two
phase composites. Both finite numbers of inclusions and periodic arrays will
be treated. Our results will then be extended to multiphase systems.

2.1. Layer potentials

We will begin with some classical results from potential theory (Guenther
and Lee, 1988; Jaswon and Symm, 1977; Kellogg, 1953; Mikhlin, 1957).
Our treatment follows most closely that of Guenther and Lee (1988). We
shall denote a two-dimensional domain by D and its boundary by S. § may
consist of a number of disjoint components, but each is assumed to be a
smooth curve with continuous curvature. If D is a bounded domain and
u,v € C*(D) N CL(D), then Green identities state that

Ju
/DvAu—l-VvVu = Sva, (2.1)
du v
/D’UAU—’U,A’U = Sva—u%, (22)
du
/DAU = 5:9;‘ (23)

* Other fast algorithms could also be used (Anderson, 1986; Odlyzko and Schénhage,
1988; Hackbusch and Nowak, 1989; Van Dommelen and Rundensteiner, 1989; Brandt
and Lubrecht, 1990).
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Here v denotes the unit outward normal vector and C} denotes the set of
functions u € C1(D) N C%(D) such that

Ju

30 ~—(P) = limv(P)- Vu(P + tv(P))

¢<0
exists uniformly for all P € S. For infinite regions, we require additional
hypotheses on the functions involved. If we suppose, for example, that u(P)
is bounded at infinity and that |Vu| = O(1/|P]) as |P| — oo, then the
Green identities hold.
One consequence of Green identities is that any function v € C?(D) N
CL(D) can be expressed as the sum of three integrals.

Theorem 2.1 Every function « € C?(D) N CL(D) can be represented as
oG ou
wP) = [ S(PQu@dse - [ GPQ)F Q) ds
+ [ 6P.@su@e, (2.4

where G(P,Q) = (1/2m)log|P — Q| is the fundamental solution of the
Laplacian and vg denotes the normal direction at Q. If D is unbounded,
the additional hypotheses that u be bounded and that |Vu| = O(1/|P]) as
|P| — oo are assumed to hold.

Proof. In Green’s second identity let v = G(P, Q). Take the domain to be
D\ K. (P), where K.(P) is the disk of radius € centred at P, and consider
the limit ¢ — 0. O

The first integral in (2.4) is referred to as a double-layer potential (with
density u), the second is referred to as a single-layer potential (with density
Ou/0v) and the third is referred to as a volume potential.

2.2. Jump relations

In order to develop integral equation methods for the problems of potential
theory, we need to study the analytic properties of layer potentials. It is well
known and straightforward to prove that the double-layer potential defined
on a smooth curve S maps continuous functions into harmonic, infinitely
differentiable functions in R? \ S. The resulting functions, however, are not
continuous in JR%.

Theorem 2.2 Let D be a bounded domain with boundary S and suppose
that the function u is continuous on S. Then the double-layer potential

9G (P,Q)u(Q)dsq

w(P) = s g
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satisfies the jump relations at Py € S

Jim u(P) = u(Py) + 3u(Py) (25)
Jim w(P) = u(Py) = Su(P). (2.6)
pe 1D

The single-layer potential maps continuous functions on S to continuous
functions in IR?. Although the result is infinitely differentiable and harmonic
in [R? \ S, the normal derivative is discontinuous across S.

Theorem 2.3 Let D be a bounded domain with boundary S and suppose
that the function p is continuous on S. Then the single-layer potential

MH:LGWQM@Nm

satisfies the following jump relations. Let Py € S and let vp, be the unit
normal vector to S at Py. Then

du _ . Ou,_ . [ OG 1
3. = ’%,%%0 v D)= Js o (Po,Q)p(Q) dsq — 5p(Fo)  (2.7)
du du 8G 1
o Plg?o_ dum (P) Saypo( 0,@)p(Q)dsq + 5p(Fo).  (2.8)
Pe “\D

We may relate, as a result of the previous theorem, the source density and
the normal derivative of the potential.

Corollary 2.1 Let u(P) = [ G(P,Q) p(Q)dsg. Then

_ ou ou
P=%v. o

Remark 2.1 In R, (8G/0vqg)(P, Q) has a removable singularity at P =
Q € S. In fact
oG 1
lim — = =
where & is the curvature of S. Thus, the smoothness of the kernel of the
double-layer potential is limited only by the smoothness of S. For infinitely
differentiable curves, the kernel is infinitely differentiable.

2.83. The Fredholm alternative

Before proceeding with our investigation of interface problems, we state the
Fredholm alternative, which allows us to investigate the solvability of a large
class of second-kind integral equations. The theorem and its proof are well
known (Guenther and Lee, 1988; Mikhlin, 1957).
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Theorem 2.4 Consider the Fredholm equation

p(P) 2 [ K(P.QI(@aQ = 1(P), 9)

where K(P,Q) is an Ly kernel, so that K is a compact operator on Ly[a, b].
Then (2.9) has a unique solution if and only if the equation

oP) - [ K(P,@p(@)aQ =0 (2.10)

has only the trivial solution p(P) = 0. Furthermore, the adjoint equation
to (2.10), defined by

w(P) =X [ K@ (@) dQ =0 (2.11)

has the same number of linearly independent solutions as (2.10). Finally, if
(2.11) has at least one non-trivial solution, then (2.9) will have a solution
only if

b -
($.9) = [ $PIPYAP =0
for all ¥ satisfying (2.11). In this case, such a solution will not be unique.

2.4. Two-phase materials

Suppose that in the plane R? with uniform conductivity o, we have embed-
ded a finite number of smooth bounded inclusions each with conductivity
o4. Let € denote the region occupied by the inclusions, let c2 = R \ 9,
and let I" denote the interface 9€2. We will determine the electrostatic field
in the plane in terms of a total potential function u, whose restriction to
Q and ¢ will be denoted by uy and u., respectively. This corresponds to
solving

Aug = 0 in Q, (2.12)
Au, = 0 in cQ, (2.13)
Ue = uqg onlT, (2.14)
aeaa—lff = ad%uyi on I, (2.15)
with the far-field boundary condition
Ue(P) = Uo(P) as P — 0. (2.16)

We now look for a solution of equations (2.12) to (2.16) in the form of a
single-layer potential

u(P) = Wa(P) + /F G(P,Q)p(Q) dso, (2.17)
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where P is an arbitrary point in the plane and p is an unknown source den-
sity. It is convenient to write the solution as a single-layer potential because
the continuity condition (2.14) is automatically satisfied. Physically, p re-
presents the charge distribution on the interface which develops in response
to the applied field (Jaswon and Symm, 1977; Hetherington and Thorpe,
1992).

In order to determine p, observe that using the jump relations (2.7) and
(2.8), the interface condition can be rewritten in the form

oa [g‘l’ - lp(P)+ / g—G(P,Q)P(Q)dSQ]

=0, [S2P)+ 30P) + [ 22 (P.Q@dsg] . (29

Rearranging the previous equation we obtain the following second-kind Fred-
holm integral equation for p,

= o(P) -2 [ 52 (P dse, (2.19)

where A = (0g — 0¢) /(04 + 0¢).

It remains to determine for what values of A the preceding equation can
be solved. For this, we invoke the Fredholm alternative and make use of the
following result.

Theorem 2.5 If the homogeneous integral equation

- 2/\/ (Q)dsg =0 (2.20)
has a nontrivial solution, then A € Rand lies on the rays A > 1 or A < —1.

Proof. See Kellogg (1953) or Mikhlin (1957). O

Corollary 2.2 As long as the ratio g4/0 is bounded and lies away from
the negative real axis, the integral equation (2.19) has a unique solution.

2.5. Solution via the Green identity

Another, perhaps more common, integral formulation for the solution to
the two-phase problem is based on Green’s second identity (2.2). This is the
approach taken, for example, by Van Bladel (1964) and Lindholm (1980).
Letting ¢ = u — ¥, in 2 and ¢4 = u — ¥, in 2 and using Green’s second
identity, we have

oG Ou
wP) = [ Fo(P.QUQ) - GPQZ Qs Peq
W(P) = [ 5e(PQV.(Q) - GPQGEQ . Peq,
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de

6P) = [GP.OTEQ - 5P sa, Pecn

Taking the limit as P approaches a pomt on I, (2.5) and (2.6) yield

oG Ou
Su(P) = auQ(P Qu(@ )—G(RQ)—(Q)dsQ, (2.21)
0P = [ SIPQRQ-CROFEQ b0, (222
26(P) = / GPQ8¢6(Q)—§€(PQ)¢6(Q)dSQ, (2.23)

repectively. Subtracting (2.22) from (2.23), we obtain

1 ou oG

3U(P) ~%u(P) = [ GP.QTQ) ~ T (P.Qu@dsg. (229
If we now multiply (2.21) by o4 and (2.24) by o, the flux interface condition
and some algebra show that

- 2/\/ (Q)dsg = (A — 1) Ta(P). (2.25)

The integral operator obtamed this way is the adjoint of the operator
obtained in equation (2.19), so that the analysis of solvability is the same.
We have chosen to use the single-layer potential approach because several
quantities of interest are computed more easily from the surface charge dis-
tribution than from values of the potential function u itself on the boundary.

2.6. Multiphase materials

Suppose now that a finite number of smooth bounded inclusions are embed-
ded in a homogeneous background material with conductivity g, but that
each inclusion is allowed a distinct conductivity. € will denote the region
occupied by the kth inclusion with conductivity o4 and its boundary will
be denoted by I'y. Assuming there are M inclusions, the total interface is
I' = UM Ty and the total area occupied by the inclusions is Q = UM Q.
Let u denote the total potential, let u; denote its restriction to the kth
inclusion, and let u. denote its restriction to the exterior domain c§2. Then

Aur = 0 inQg, k=1,...,M, (2.26)
Au, = 0 in cf, (2.27)
Ue = ur only, k=1,...,M, (2.28)
Ou, Ouy
O'EE = O'kE on Fk, k—].,,M (229)

and
ue(P) — Uy (P) as P — co.
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As for two-phase materials, we seek a solution in the form of a single-layer
potential

u(P) = Wu(P)+ [ G(P,Q)p(Q)ds0. (230)
If we impose the condition (2.29) at each interface and let

M = (of — Ue)(ak + 0¢),

we obtain

22 22 () = p(P) — 22 / j—i;(n Qr(Q)dsq,  (231)

BI/P

for Pe Ty, k=1,..., M. Since each of the A; may be distinct, this is actu-
ally a system of integral equations. Nevertheless, the Fredholm alternative
can still be applied.

Theorem 2.6 Suppose A; is bounded for k = 1,..., M and that the homo-
geneous equation

o(P)~ 2% [ 22 (P,Q)o(@)dsg =0 (2.32)
r ovp

has a nontrivial solution. Then at least one of the ratios o4 /0. has negative
real part.

Proof. Let u = upg + ius denote the single-layer potential

u(P) = [ G(P.Q)o(@)dsg

corresponding to a complex-valued nontrivial solution of (2.32). Then

2 (oege (PY =5t (P)) = o(P) - 2x [ 52 (P,@IA(Q) dsc,

o; + O¢

(2.33)
for P € I'y, so that
ou du
— — o —— =0. 2.
0ese (P)=oige (P)=0 (234
To simplify notation, let us now define o by
U(P) = Uk/ae

for P € Q, with o = og+ C o7. Separating (2.34) into real and imaginary
parts,

Oup Oug Ouy

7R - hiail = 2.
v + IR v —+UI ov — 0, (2.35)
oug Ouy Our

T —ormt —orgk =0 (2.36)
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Multiplying equation (2.35) by ug and (2.36) by uy, adding them, and in-
tegrating along I' yields

/( M_RM%)_/ ( Our @.1)
FuR3V+ e I‘GR YR TWG

3u1 auR .
+/FUI <uR8—U_ —’U,]W—) = u. (237)

The third integral vanishes because of Green’s second identity (2.2) and,
from Green'’s first identity, we obtain

//CQ(VUR)2 + (Vur)? + //Q or((Vur)? + (Vuy)?) = 0.

Thus, if o is nonnegative, u is identically zero and p is the trivial solution.
O

Corollary 2.3 As long as all the ratios o4 /o are bounded and have non-
negative real part, the integral equation (2.31) has a unique solution.

2.7. Periodic structures

Consider a two-phase composite medium in the plane consisting of a periodic
array of inclusions embedded in a uniform background with conductivity o..
Let €4 denote the kth inclusion with conductivity o4 and boundary Ty, and
suppose that a square unit cell denoted by B contains M such inclusions.
Let I' = LJ,JCVIZII‘,C and let 2 = U,ICWZIQ;C. We are interested in calculating the
induced electrostatic potential (and eventually the effective conductivity of
the material). The potential equation to be solved can be written as follows:

Aug = 0 inB\Q, (2.38)
Au, = 0 incQ, (2.39)
e = ug onl, (2.40)
Ou, Oug
[Ote _, Old , 2.41
T Ty onT (2.41)

where u4 and u,. are the restrictions of the total potential to the inclusions
and the background, respectively. We also require that u — ¥, be doubly
periodic, that is
wz+1,y) —ulz,y) = —E,, (2.42)
w(z,y+1) —u(z,y) = 0. (2.43)
We again look for a solution of equations (2.38) to (2.43) in the form of a
single-layer potential

u(P) = Ua(P) + /F K(P,Q)p(Q) dsg, (2.44)
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but now K(P,Q) is the doubly periodic Green function rather than the
fundamental solution. There are a number of questions which arise in the
evaluation of such a Green function that we will not review here in detail
(Rayleigh, 1892; Perrins et al., 1979a; Greengard and Rokhlin, 1987). We
simply observe that periodicity can be imposed by considering the entire
lattice of charge sources in the plane. These sources are translates of the
density p to all image cells (see Section 3.1).

It is clear from our construction that the function u(P) defined in (2.44)
satisfies the conditions (2.42), (2.43) and (2.40). It remains only to satisfy
the flux interface condition. By using the jump relations (2.7) and (2.8), we
obtain

2 2¥a py Z (P - 22 / (Q) dso, (2.45)
dvp

where A = (04 — 0¢)/(04 + 0¢). The analysm of solvability for this system
is virtually identical to that of the two-phase composite in free space, so we
simply state the result as

Theorem 2.7 If the homogeneous integral equation

p(P) =2 [ 2 (P,Q)p(@)dsq =0 (2.46)

has a nontrivial solution, then A € Rand lies on the rays A > 1 or A < —1.

2.8. Periodic multiphase composites

It is a straightforward matter to extend our integral equation approach to
multiphase composites using the same single-layer potential representation
as for the two-phase system. The integral equation is solvable if the real
parts of all the conductivities are positive, as in Section 2.6.

2.9. Computing the effective conductivity

Once the integral equation (2.45), or its multiphase analogue, has been
solved, one of the important functionals one can extract from the source
density p is the effective conductivity. We assume that the periodic cell is a
unit square with vertices A, B, C, and D, listed counterclockwise from the
lower left hand corner. We denote the boundary of the square by L. The
effective conductivity matrix

11 012
Off =
f ( 021 022 )
relates the current density vector J and the applied field E via
J=ogF. (2.47)
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If we suppose that E = (1,0), then clearly

C
o = ou 4. (2.48)
B Ov
B gy
= —ds. 2.49
0921 M (91/ dS ( )

Consider first the quantity o;; and apply Green’s second identity (2.2)
in the region B \ € to the functions u and v where v(z,y) = z, u(z,y)
is the computed total potential, and Q2 denotes the region occupied by the
inclusions. Since u and v are harmonic functions in this domain, we have

/ o _ s —o (2.50)
T

v -
uL OV OV,

where v, denotes the unit inward normal to I'. Green’s third identity and a
small amount of algebra show that

ou ov ou Oug
Ou O o e _Oud\ 4o _ / 2.51
Fval/* uay* s /Fv(ay 8u> s 1“acpds, ( )
so that it remains to analyse the integral in (2.50) along L. A straightforward
calculation yields

du v € ou

Lvay*—uay*ds— i Eds—l (2.52)

and, therefore,
oci1=1+ / zpds. (2.53)

r
Similarly,
o9 = / ypds. (2.54)
r

Finally, the components o;2 and 092 can be computed by applying a field in
the y-direction. If E = (0,1), then

C ou

o192 = A Eda’—/rxpds, (2.55)
Dy

Oy = s = 1+/ypds. (2.56)
c Ov r

3. Fast solution of integral equations

Consider now the numerical solution of the two-phase interface problem in
free space using the integral equation (2.19), which we write explicitly as

A 0 0¥,
p(P) =~ [ 5o 1061P - Qlo(@)ds@ = 245"

(P). (3.1)
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We select N; points on the boundary I'; of the jth inclusion which are equi-
spaced in arclength and define h; = |I'j|/N;, where |I';| denotes the length
of boundary. The total number of discretization points is N = ij\i1 N;.
Associated with each such point, denoted Pij , is an unknown charge density
value pl] Using the trapezoidal rule, we replace (3.1) by

) A M N; 9 ' L ‘
pi==d Y o——log|P] — Filpl = —2Mv/ - (1,0), (3.2)
Ti=t k=19%p

fori=1,...,N; and j = 1,..., M. Care must be taken when PJ? = Pl’c to
use the appropriate limit %/c(Plk) in place of (0/0vp;)log |\P/ — P,i], where
& denotes curvature. The trapezoidal rule is used for quadrature since it
achieves superalgebraic convergence on smooth contours.

We solve linear systems like (3.2) iteratively, using the generalized mini-
mum residual method GMRES (Saad and Schultz, 1986). The reason for
choosing a conjugate gradient type iterative method is that the integral
operator in (3.1) is compact and well approximated by a finite rank operator.
The eigenvalues of I + K are bounded and cluster at one. As a result, the
linear system (3.2) has a bounded condition number and the number of
iterations required is independent of N (for a fixed physical problem). The
amount of work required to solve the linear system, therefore, scales like
J - f(N) where J is the number of iterations and f(N) is the amount of
work required to compute matrix-vector products. Since K (or its discrete
version) is dense, naive methods require O(J-N?) work. The Fast Multipole
Method, however, allows the cost to be reduced to O(N), so that the cost
of solving the linear system is O(J - N).

3.1. The fast multipole method

The Fast Multipole Method (FMM) is a hierarchical scheme for the eval-
uation of Coulombic interactions in both two and three space dimensions
(Rokhlin, 1985; Greengard and Rokhlin, 1987; Carrier et al., 1988; Green-
gard, 1988; Greengard and Rokhlin, 1989). Like the schemes of Van Dom-
melen and Rundensteiner (1989), Odlyzko and Schonhage (1988), Appel
(1985), Barnes and Hut (1986) and others, it is based on using multipole
expansions and/or Taylor series to compute far field interactions. For a
system of N sources (charges, dipoles, etc.), the FMM requires O(N) work
to evaluate all pairwise interactions, with the constant depending on the
desired precision. With minor modification, the FMM allows for the cal-
culation of electrostatic interactions in a periodic array as well (Greengard
and Rokhlin, 1987). We refer the reader to the articles listed above for a
complete description of the method.
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Fig. 3. A square array of 1,024 inclusions in the plane. This array is studied in free
space and as a periodic system in Examples 1 and 2.

4. Numerical results

We have examined the behaviour of the integral equations (2.19), (2.31)
and (2.45) over a wide range of geometries and conductivity ratios, and
have selected three for the purpose of illustration. In each case, the GMRES
method was used to reduce the Euclidean norm of the residual to below 1076
and the FMM was used to compute matrix—vector products with a tolerance
of 1078, All calculations were carried out on an IBM RS/6000 Model 580
in double precision. Evaluation of the potential off the boundary (once the
integral equation was solved) was done using the FMM. Incorporation of
Mayo’s method (Mayo, 1984) would accelerate this part of the calculation
and will be incorporated at a later date.

Example 1 The geometry in the first example consists of a square array
of 1,024 disks in free space (Figure 3). The infinite medium is assumed
to have conductivity one, while the inclusions have been assigned either a
conductivity of 10% or a random number in the range [10~7,10%). Table 1
shows the type of problem being solved (0;/0. = 108 for the two-phase case
and o;/0. = ‘Random’ for the multiphase case), the number of boundary
points used (N), the number of iterations required (Its), the time required
for solving the integral equation (T') and the dipole moment

P= </wpds,/ypd8>
T r

induced in response to the applied field E = (1,0). Figure 4 shows contour
plots of the total and induced potentials.



398

L. GREENGARD AND M. MOURA

©

(B)
J||'|f'|;"iIrr|’,l"’J|"]“| |h l| ||"|||'|'
g g
'/”W’rilf(fﬁﬁﬁﬁffT uwmu\'-..!wm\
I
“\vn\ﬁ\\‘fﬂz«\iev:ﬂ |
L

i |'|I |||||'||

(D)

Fig. 4. Contour plots of the electrostatic potential for Example 1. (A) and (C)
show the total and induced potential, respectively, for the two-phase case; (B) and
(D) are the corresponding results for the (random) multiphase case.

Example 2 We now consider the same collection of 1,024 disks as in Ex-
ample 1, but extended periodically. The background matrix is assumed to
have conductivity one, while the inclusions have again been assigned either
a conductivity of 106 or a random number in the range [10=7,10%]. Table
2 summarizes our results, while Figure 5 shows contour plots of the total
and induced potentials. (Note that in the two-phase case, we are solving a

problem 1,024 times larger than necessary.)

Example 3 While materials with disk-like inclusions constitute an impor-
tant class of composites, other geometries are clearly of interest as well.
We therefore consider a collection of eleven slender inclusions in free space
(Figure 6). Each inclusion is an ellipse which has been slightly perturbed in



ELECTROSTATICS OF COMPOSITES 399

Table 1. Performance of the numerical method in Ezample 1. For
insufficiently resolved problems, GMRES was unable to achieve the desired
restdual in less than 100 iterations. The iteration counts in parentheses
indicate the number of GMRES steps allowed in such cases.

o/, N Tts T (s) P

106 8,192 (7) 26.13  (—1.65231,0.0000000)

108 16,384 7 40.1 (—0.75483,0.0000000)

105 32,768 7 1049  (—0.75484,0.0000000)

108 65,536 7 166.2 (—0.75484,0.0000000)
Random 8,192 (9) 321 (—0.396286,—0.000747)
Random 16,384 9 504 (—0.397286,—0.001183)
Random 32,768 9 131.5 (-0.397287,—0.001184)
Random 65,536 9 2083 (—0.397287,—0.001184)

Table 2. Performance of the numerical method in Ezample 2. For
insufficiently resolved problems, GMRES was unable to achieve the desired
restdual in less than 100 iterations. The iteration counts in parentheses
indicate the number of GMRES steps allowed in such cases.

o;/0o. N Tts T (s) P
108 8,192 2 5.6 (—1.09217,0.0000000)
108 16,384 3 31.3 {—1.08005,0.0000000)
108 32,768 3 36.63 (—1.08005,0.0000000)
108 65,536 3 106.2 (—1.08005,0.0000000)

Random 8,192 (9) 23.1 (-0.475469,—0.001001)
Random 16,384 10 82.9 (—0.458208,—0.001211)
Random 32,768 9 83.0 (—0.458201,-0.001211)
Random 65,536 9  262.1 (—0.458201,—0.001211)




400 L. GREENGARD AND M. MOURA

(A) (B)

000000000 D0N000 0000000 &J:a.mw sl ciy
0000000000 0000 BABH000! 01y £ 000 BG0G 00 OO DG00NT
OO0 000! LE GO LG DU I 0000000000
iSO gy OO0 DR X R R0 (RENAE D000

(© (D)

Fig. 5. Contour plots of the electrostatic potential for Example 2. (A) and (C)
show the total and induced potential, respectively, for the two-phase case; (B) and
(D) are the corresponding results for the (random) multiphase case.

order to make the geometry less regular. The background matrix is assumed
to have conductivity one, while the inclusions have been assigned either a
conductivity of 10% or 1076, Table 3 summarizes our results, while Figure 7
shows contour plots of the total and induced potentials.

Example 4 In this example, the slender inclusions of Example 3 are ex-
tended periodically. Table 4 summarizes our results, while Figure 8 shows
contour plots of the total and induced potentials.

Example 5 The last geometry we consider is that of a fairly closely packed
mixture of convex and nonconvex inclusions (Figure 9). In this free space
calculation, the background matrix is assumed to have conductivity one,
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Table 3. Performance of the numerical method in Example 3. For
insufficiently resolved problems, GMRES was unable to achieve the desired
residual in less than 100 iterations. The iteration counts in parentheses
indicate the number of GMRES steps allowed in such cases.

o:/0e N Tts T (s) p
105 1,100 (40) 155 (—0.688458,—0.387694)
106 2,200 (40) 25.7 (—0.874540,—0.251159)
105 4,400 40 45.2  (—0.874171,-0.251477)
10° 8800 40 87.6 (—0.874171,—0.251477)
107% 1,100 45 17.8 (0.860182,—0.252492)
107 2200 45 286  (0.855730,—0.251480)
107 4400 45 51.8 (0.855714,—0.251475)
107 8,800 45 99.1 (—0.855714,—0.251475)

while the inclusions have been assigned either a conductivity of 10% or 1076.
Table 5 summarizes our results, while Figure 10 shows contour plots of the
total and induced potentials.

Example 6 In our last example, the inclusions of Example 5 are extended
periodically. Table 6 summarizes our results, while Figure 11 shows contour

plots of the total and induced potentials.

NS

//

Fig. 6. Eleven slender inclusions in the plane. Each inclusion is a slightly perturbed
ellipse. This geometry is studied in Examples 3 and 4.
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Table 4. Performance of the numerical method in Example 4. For
insufficiently resolved problems, GMRES was unable to achieve the desired
residual in less than 100 iterations. The iteration counts in parentheses
indicate the number of GMRES steps allowed in such cases.

0/, N Its T (s) p

105 1,100 (48) 18.1 (—3.22233,—3.67602)
105 2,200 (48) 25.6 (—1.65745,—0.75526)
105 4,400 48 638  (—1.64403,—0.73715)
10° 8,800 48 989 (—1.64399,-0.73723)
105 17,600 48 2569 (—1.64399,—0.73723)

10-% 1,100 51 19.8  (0.563947,—0.124834
10-8 2,200 48 253 (0.554749,—-0.124215
10-6 4,400 48 63.3 (0.554611,—0.124189
1078 8,800 48 99.4 (0.554611,—0.124189
107% 17,600 48 258.0 (0.554611,—0.124189)

e N e e

Table 5. Performance of the numerical method in Example 5. For
insufficiently resolved problems, GMRES was unable to achieve the desired
residual in less than 100 iterations. The iteration counts in parentheses
indicate the number of GMRES steps allowed in such cases.

0i/0e N Its T (s) P

10° 450 (29) 4.6  (—1.48303,—0.07427)
106 900 (29) 9.6 (—1.38406,—0.01940)
106 1,800 29 17.5 (—1.37925,—0.01722)
105 3,600 29 309 (—1.37925,—0.01723)
106 7,200 29 517 (—1.37925—0.01723)

1076 450 34 54 (1.4857,-0.05119)

10°6 900 31 105 (1.45736,—0.017431)
107 1,800 31 183  (1.45698,—0.01723)
1076 3,600 31 328  (1.45698,—0.01723)
106 7,200 31 556  (1.45698,—0.01723)
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Fig. 7. Contour plots of the electrostatic potential for Example 3. (A) and (C)
show the total and induced potential, respectively, for the case of highly conduct-
ing inclusions; (B) and (D) are the corresponding results for the case of poorly
conducting inclusions.

Several observations can be made on the basis of the preceding examples.

1 For a fixed problem, the number of GMRES iterations required is con-
stant, once sufficient resolution has been achieved.

2 The CPU time grows linearly with the number of discretization points.

3  The rate of convergence of the computed dipole moment is super-
algebraic. (This rapid convergence can also be demonstrated for point-
wise values of the charge density or other functionals of the solution.)

4 While the number of iterations required varies with the complexity of
the geometry, it is remarkably insensitive to the conductivity ratio (in
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Fig. 8. Contour plots of the electrostatic potential for Example 4. (A) and (C)
show the total and induced potential, respectively, for the case of highly conduct-
ing inclusions; (B) and (D) are the corresponding results for the case of poorly
conducting inclusions.

marked contrast to the behavior of finite difference and finite element
schemes).

As a final check on our calculations, we have computed the full effec-
tive conductivity tensor for the slender inclusion case (Example 4). With
conductivity ratio 108,

Sl (493128 0.16328
off =\ 0.16328 6.22091 /'
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tiin

Fig. 9. A mixture of nine convex and nonconvex inclusions in the plane. This
geometry is studied in Examples 5 and 6.

while with conductivity ratio 107,

» _ { 0.160888 0.005327
Teff = \ 0.005327 0.202963

Table 6. Performance of the numerical method in Example 6. For
insufficiently resolved problems, GMRES was unable to achieve the desired
residual 1n less than 100 iterations. The iteration counts in parentheses
indicate the number of GMRES steps allowed in such cases.

0:/0e N Its T (s) p

108 450 (30) 4.2  (—7.78783,2.2131022)
106 900 (30) 83  (—2.84366,0.74131)
105 1,800 30 149  (—3.93129,0.16328)
108 3,600 30 226  (—3.93128,0.16328)
106 7,200 30 49.6  (—3.93128,0.16328)

1076 450 30 4.1  (0.846530,—0.006531)
10— 900 29 7.8 (0.839114,0.005338)
107 1,800 29 144 (0.839112,0.005327)
10-% 3,600 29 22.8 (0.839112,0.005327)
10-¢ 7,200 29 473 (0.839112,0.005327)
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Fig. 10. Contour plots of the electrostatic potential for Example 5. (A) and (C)
show the total and induced potential, respectively, for the case of highly conduct-
ing inclusions; (B) and (D) are the corresponding results for the case of poorly
conducting inclusions.

These matrices satisfy the Keller-Dykhne-Mendelson relation (Keller, 1964;
Dykhne, 1970; Mendelson, 1975)

0 1 -1 0 1
(—1 0><Uzﬁ> :Uelff<—1 0)
to full accuracy.

5. Conclusions

We have presented an algorithm for the solution of the electrostatic field
equations in composite media based on a fast multipole accelerated integral
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Fig. 11. Contour plots of the electrostatic potential for Example 6. (A) and (C)
show the total and induced potential, respectively, for the case of highly conduct-
ing inclusions; (B) and (D) are the corresponding results for the case of poorly
conducting inclusions.

equation solver. Large-scale problems, involving thousands of inclusions
with perhaps one hundred thousand boundary points, can be solved in min-
utes using modest computational resources (such as a single workstation).
Similar methods have been proposed for related problems by Rokhlin (1985),
Nabors and White (1991), and Greenbaum et al. (1992, 1993). While we
have only considered smooth inclusions, the method can be extended by
modifying the quadrature to allow for the presence of corners (Hethering-
ton and Thorpe, 1992). Extension to three dimensions is straightforward
but requires incorporation of the three-dimensional FMM (Greengard and
Rokhlin, 1988; 1989; Nabors and White, 1991). It is our hope that this
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method will provide researchers in materials science with a new tool — the
ability to compute effective properties of systems with complex microstruc-
ture by direct solution of the governing equation.
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